Source code for arviz_stats.loo.loo_approximate_posterior

"""Compute PSIS-LOO-CV for approximate posteriors."""

from arviz_base import rcParams

from arviz_stats.loo.helper_loo import (  # pylint: disable=cyclic-import
    _check_log_density,
    _compute_loo_results,
    _prepare_loo_inputs,
)


[docs] def loo_approximate_posterior(data, log_p, log_q, pointwise=None, var_name=None, log_jacobian=None): r"""Compute PSIS-LOO-CV for approximate posteriors. Estimates the expected log pointwise predictive density (elpd) using Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) for approximate posteriors (e.g., from variational inference). Requires log-densities of the target (log_p) and proposal (log_q) distributions. The PSIS-LOO-CV method is described in [1]_ and [2]_. The approximate posterior correction is computed using the method described in [3]_. Parameters ---------- data : DataTree or InferenceData Input data. It should contain the log_likelihood group corresponding to samples drawn from the proposal distribution (q). log_p : ndarray or DataArray The (target) log-density evaluated at S samples from the target distribution (p). If ndarray, should be a vector of length S where S is the number of samples. If DataArray, should have dimensions matching the sample dimensions ("chain", "draw"). log_q : ndarray or DataArray The (proposal) log-density evaluated at S samples from the proposal distribution (q). If ndarray, should be a vector of length S where S is the number of samples. If DataArray, should have dimensions matching the sample dimensions ("chain", "draw"). pointwise : bool, optional If True, returns pointwise values. Defaults to rcParams["stats.ic_pointwise"]. var_name : str, optional The name of the variable in log_likelihood groups storing the pointwise log likelihood data to use for loo computation. log_jacobian : DataArray, optional Log-Jacobian adjustment for variable transformations. Required when the model was fitted on transformed response data :math:`z = T(y)` but you want to compute ELPD on the original response scale :math:`y`. The value should be :math:`\log|\frac{dz}{dy}|` (the log absolute value of the derivative of the transformation). Must be a DataArray with dimensions matching the observation dimensions. Returns ------- ELPDData Object with the following attributes: - **elpd**: expected log pointwise predictive density - **se**: standard error of the elpd - **p**: effective number of parameters - **n_samples**: number of samples - **n_data_points**: number of data points - **warning**: True if the estimated shape parameter of Pareto distribution is greater than ``good_k``. - **elpd_i**: :class:`~xarray.DataArray` with the pointwise predictive accuracy, only if ``pointwise=True`` - **pareto_k**: array of Pareto shape values, only if ``pointwise=True`` - **good_k**: For a sample size S, the threshold is computed as ``min(1 - 1/log10(S), 0.7)`` - **approx_posterior**: True if approximate posterior was used. Examples -------- To calculate PSIS-LOO-CV for posterior approximations, we need to provide the log-densities of the target and proposal distributions. Here we use dummy log-densities. In practice, the log-densities would typically be computed by a posterior approximation method such as the Laplace approximation or automatic differentiation variational inference (ADVI): .. ipython:: In [1]: import numpy as np ...: import xarray as xr ...: from arviz_stats import loo_approximate_posterior ...: from arviz_base import load_arviz_data, extract ...: ...: data = load_arviz_data("centered_eight") ...: log_lik = extract(data, group="log_likelihood", var_names="obs", combined=False) ...: rng = np.random.default_rng(214) ...: ...: values_p = rng.normal(loc=0, scale=1, size=(log_lik.chain.size, log_lik.draw.size)) ...: log_p = xr.DataArray( ...: values_p, ...: dims=["chain", "draw"], ...: coords={"chain": log_lik.chain, "draw": log_lik.draw} ...: ) ...: ...: values_q = rng.normal(loc=-1, scale=1, size=(log_lik.chain.size, log_lik.draw.size)) ...: log_q = xr.DataArray( ...: values_q, ...: dims=["chain", "draw"], ...: coords={"chain": log_lik.chain, "draw": log_lik.draw} ...: ) Now we can calculate pointwise PSIS-LOO-CV for posterior approximations: .. ipython:: In [2]: loo_approx = loo_approximate_posterior( ...: data, ...: log_p=log_p, ...: log_q=log_q, ...: var_name="obs", ...: pointwise=True ...: ) ...: loo_approx We can also calculate the PSIS-LOO-CV for posterior approximations with subsampling for large datasets: .. ipython:: In [3]: from arviz_stats import loo_subsample ...: loo_approx_subsample = loo_subsample( ...: data, ...: observations=4, ...: var_name="obs", ...: log_p=log_p, ...: log_q=log_q, ...: pointwise=True ...: ) ...: loo_approx_subsample See Also -------- loo : Standard PSIS-LOO-CV. loo_subsample : Sub-sampled PSIS-LOO-CV. compare : Compare models based on their ELPD. References ---------- .. [1] Vehtari et al. *Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC*. Statistics and Computing. 27(5) (2017) https://doi.org/10.1007/s11222-016-9696-4 arXiv preprint https://arxiv.org/abs/1507.04544. .. [2] Vehtari et al. *Pareto Smoothed Importance Sampling*. Journal of Machine Learning Research, 25(72) (2024) https://jmlr.org/papers/v25/19-556.html arXiv preprint https://arxiv.org/abs/1507.02646 .. [3] Magnusson, M., Riis Andersen, M., Jonasson, J., & Vehtari, A. *Bayesian Leave-One-Out Cross-Validation for Large Data.* Proceedings of the 36th International Conference on Machine Learning, PMLR 97:4244–4253 (2019) https://proceedings.mlr.press/v97/magnusson19a.html arXiv preprint https://arxiv.org/abs/1904.10679 """ loo_inputs = _prepare_loo_inputs(data, var_name) pointwise = rcParams["stats.ic_pointwise"] if pointwise is None else pointwise log_likelihood = loo_inputs.log_likelihood log_p = _check_log_density( log_p, "log_p", log_likelihood, loo_inputs.n_samples, loo_inputs.sample_dims ) log_q = _check_log_density( log_q, "log_q", log_likelihood, loo_inputs.n_samples, loo_inputs.sample_dims ) approx_correction = log_p - log_q # Handle underflow/overflow approx_correction = approx_correction - approx_correction.max() corrected_log_ratios = -log_likelihood.copy() corrected_log_ratios = corrected_log_ratios + approx_correction # Handle underflow/overflow log_ratio_max = corrected_log_ratios.max(dim=loo_inputs.sample_dims) corrected_log_ratios = corrected_log_ratios - log_ratio_max # ignore r_eff here, set to r_eff=1.0 psis_input = -corrected_log_ratios log_weights, pareto_k = psis_input.azstats.psislw(r_eff=1.0, dim=loo_inputs.sample_dims) return _compute_loo_results( log_likelihood=loo_inputs.log_likelihood, var_name=loo_inputs.var_name, pointwise=pointwise, sample_dims=loo_inputs.sample_dims, n_samples=loo_inputs.n_samples, n_data_points=loo_inputs.n_data_points, log_weights=log_weights, pareto_k=pareto_k, approx_posterior=True, log_jacobian=log_jacobian, )