"""Compute PSIS-LOO-CV for approximate posteriors."""
from arviz_base import rcParams
from arviz_stats.loo.helper_loo import ( # pylint: disable=cyclic-import
_check_log_density,
_compute_loo_results,
_prepare_loo_inputs,
)
[docs]
def loo_approximate_posterior(data, log_p, log_q, pointwise=None, var_name=None, log_jacobian=None):
r"""Compute PSIS-LOO-CV for approximate posteriors.
Estimates the expected log pointwise predictive density (elpd) using Pareto-smoothed
importance sampling leave-one-out cross-validation (PSIS-LOO-CV) for approximate
posteriors (e.g., from variational inference). Requires log-densities of the target (log_p)
and proposal (log_q) distributions.
The PSIS-LOO-CV method is described in [1]_ and [2]_. The approximate posterior correction
is computed using the method described in [3]_.
Parameters
----------
data : DataTree or InferenceData
Input data. It should contain the log_likelihood group corresponding to samples
drawn from the proposal distribution (q).
log_p : ndarray or DataArray
The (target) log-density evaluated at S samples from the target distribution (p).
If ndarray, should be a vector of length S where S is the number of samples.
If DataArray, should have dimensions matching the sample dimensions
("chain", "draw").
log_q : ndarray or DataArray
The (proposal) log-density evaluated at S samples from the proposal distribution (q).
If ndarray, should be a vector of length S where S is the number of samples.
If DataArray, should have dimensions matching the sample dimensions
("chain", "draw").
pointwise : bool, optional
If True, returns pointwise values. Defaults to rcParams["stats.ic_pointwise"].
var_name : str, optional
The name of the variable in log_likelihood groups storing the pointwise log
likelihood data to use for loo computation.
log_jacobian : DataArray, optional
Log-Jacobian adjustment for variable transformations. Required when the model was fitted
on transformed response data :math:`z = T(y)` but you want to compute ELPD on the
original response scale :math:`y`. The value should be :math:`\log|\frac{dz}{dy}|`
(the log absolute value of the derivative of the transformation). Must be a DataArray
with dimensions matching the observation dimensions.
Returns
-------
ELPDData
Object with the following attributes:
- **elpd**: expected log pointwise predictive density
- **se**: standard error of the elpd
- **p**: effective number of parameters
- **n_samples**: number of samples
- **n_data_points**: number of data points
- **warning**: True if the estimated shape parameter of Pareto distribution is greater
than ``good_k``.
- **elpd_i**: :class:`~xarray.DataArray` with the pointwise predictive accuracy, only if
``pointwise=True``
- **pareto_k**: array of Pareto shape values, only if ``pointwise=True``
- **good_k**: For a sample size S, the threshold is computed as
``min(1 - 1/log10(S), 0.7)``
- **approx_posterior**: True if approximate posterior was used.
Examples
--------
To calculate PSIS-LOO-CV for posterior approximations, we need to provide the log-densities
of the target and proposal distributions. Here we use dummy log-densities. In practice, the
log-densities would typically be computed by a posterior approximation method such as the
Laplace approximation or automatic differentiation variational inference (ADVI):
.. ipython::
In [1]: import numpy as np
...: import xarray as xr
...: from arviz_stats import loo_approximate_posterior
...: from arviz_base import load_arviz_data, extract
...:
...: data = load_arviz_data("centered_eight")
...: log_lik = extract(data, group="log_likelihood", var_names="obs", combined=False)
...: rng = np.random.default_rng(214)
...:
...: values_p = rng.normal(loc=0, scale=1, size=(log_lik.chain.size, log_lik.draw.size))
...: log_p = xr.DataArray(
...: values_p,
...: dims=["chain", "draw"],
...: coords={"chain": log_lik.chain, "draw": log_lik.draw}
...: )
...:
...: values_q = rng.normal(loc=-1, scale=1, size=(log_lik.chain.size, log_lik.draw.size))
...: log_q = xr.DataArray(
...: values_q,
...: dims=["chain", "draw"],
...: coords={"chain": log_lik.chain, "draw": log_lik.draw}
...: )
Now we can calculate pointwise PSIS-LOO-CV for posterior approximations:
.. ipython::
In [2]: loo_approx = loo_approximate_posterior(
...: data,
...: log_p=log_p,
...: log_q=log_q,
...: var_name="obs",
...: pointwise=True
...: )
...: loo_approx
We can also calculate the PSIS-LOO-CV for posterior approximations with subsampling
for large datasets:
.. ipython::
In [3]: from arviz_stats import loo_subsample
...: loo_approx_subsample = loo_subsample(
...: data,
...: observations=4,
...: var_name="obs",
...: log_p=log_p,
...: log_q=log_q,
...: pointwise=True
...: )
...: loo_approx_subsample
See Also
--------
loo : Standard PSIS-LOO-CV.
loo_subsample : Sub-sampled PSIS-LOO-CV.
compare : Compare models based on their ELPD.
References
----------
.. [1] Vehtari et al. *Practical Bayesian model evaluation using leave-one-out cross-validation
and WAIC*. Statistics and Computing. 27(5) (2017) https://doi.org/10.1007/s11222-016-9696-4
arXiv preprint https://arxiv.org/abs/1507.04544.
.. [2] Vehtari et al. *Pareto Smoothed Importance Sampling*.
Journal of Machine Learning Research, 25(72) (2024) https://jmlr.org/papers/v25/19-556.html
arXiv preprint https://arxiv.org/abs/1507.02646
.. [3] Magnusson, M., Riis Andersen, M., Jonasson, J., & Vehtari, A. *Bayesian Leave-One-Out
Cross-Validation for Large Data.* Proceedings of the 36th International Conference on
Machine Learning, PMLR 97:4244–4253 (2019)
https://proceedings.mlr.press/v97/magnusson19a.html
arXiv preprint https://arxiv.org/abs/1904.10679
"""
loo_inputs = _prepare_loo_inputs(data, var_name)
pointwise = rcParams["stats.ic_pointwise"] if pointwise is None else pointwise
log_likelihood = loo_inputs.log_likelihood
log_p = _check_log_density(
log_p, "log_p", log_likelihood, loo_inputs.n_samples, loo_inputs.sample_dims
)
log_q = _check_log_density(
log_q, "log_q", log_likelihood, loo_inputs.n_samples, loo_inputs.sample_dims
)
approx_correction = log_p - log_q
# Handle underflow/overflow
approx_correction = approx_correction - approx_correction.max()
corrected_log_ratios = -log_likelihood.copy()
corrected_log_ratios = corrected_log_ratios + approx_correction
# Handle underflow/overflow
log_ratio_max = corrected_log_ratios.max(dim=loo_inputs.sample_dims)
corrected_log_ratios = corrected_log_ratios - log_ratio_max
# ignore r_eff here, set to r_eff=1.0
psis_input = -corrected_log_ratios
log_weights, pareto_k = psis_input.azstats.psislw(r_eff=1.0, dim=loo_inputs.sample_dims)
return _compute_loo_results(
log_likelihood=loo_inputs.log_likelihood,
var_name=loo_inputs.var_name,
pointwise=pointwise,
sample_dims=loo_inputs.sample_dims,
n_samples=loo_inputs.n_samples,
n_data_points=loo_inputs.n_data_points,
log_weights=log_weights,
pareto_k=pareto_k,
approx_posterior=True,
log_jacobian=log_jacobian,
)