arviz_stats.loo_approximate_posterior#
- arviz_stats.loo_approximate_posterior(data, log_p, log_q, pointwise=None, var_name=None, log_jacobian=None)[source]#
Compute PSIS-LOO-CV for approximate posteriors.
Estimates the expected log pointwise predictive density (elpd) using Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) for approximate posteriors (e.g., from variational inference). Requires log-densities of the target (log_p) and proposal (log_q) distributions.
The PSIS-LOO-CV method is described in [1] and [2]. The approximate posterior correction is computed using the method described in [3].
- Parameters:
- data
xarray.DataTreeorInferenceData Input data. It should contain the log_likelihood group corresponding to samples drawn from the proposal distribution (q).
- log_p
ndarrayorxarray.DataArray The (target) log-density evaluated at S samples from the target distribution (p). If ndarray, should be a vector of length S where S is the number of samples. If DataArray, should have dimensions matching the sample dimensions (“chain”, “draw”).
- log_q
ndarrayorxarray.DataArray The (proposal) log-density evaluated at S samples from the proposal distribution (q). If ndarray, should be a vector of length S where S is the number of samples. If DataArray, should have dimensions matching the sample dimensions (“chain”, “draw”).
- pointwisebool, optional
If True, returns pointwise values. Defaults to rcParams[“stats.ic_pointwise”].
- var_name
str, optional The name of the variable in log_likelihood groups storing the pointwise log likelihood data to use for loo computation.
- log_jacobian
xarray.DataArray, optional Log-Jacobian adjustment for variable transformations. Required when the model was fitted on transformed response data \(z = T(y)\) but you want to compute ELPD on the original response scale \(y\). The value should be \(\log|\frac{dz}{dy}|\) (the log absolute value of the derivative of the transformation). Must be a DataArray with dimensions matching the observation dimensions.
- data
- Returns:
ELPDDataObject with the following attributes:
elpd: expected log pointwise predictive density
se: standard error of the elpd
p: effective number of parameters
n_samples: number of samples
n_data_points: number of data points
warning: True if the estimated shape parameter of Pareto distribution is greater than
good_k.elpd_i:
DataArraywith the pointwise predictive accuracy, only ifpointwise=Truepareto_k: array of Pareto shape values, only if
pointwise=Truegood_k: For a sample size S, the threshold is computed as
min(1 - 1/log10(S), 0.7)approx_posterior: True if approximate posterior was used.
See also
looStandard PSIS-LOO-CV.
loo_subsampleSub-sampled PSIS-LOO-CV.
compareCompare models based on their ELPD.
References
[1]Vehtari et al. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5) (2017) https://doi.org/10.1007/s11222-016-9696-4 arXiv preprint https://arxiv.org/abs/1507.04544.
[2]Vehtari et al. Pareto Smoothed Importance Sampling. Journal of Machine Learning Research, 25(72) (2024) https://jmlr.org/papers/v25/19-556.html arXiv preprint https://arxiv.org/abs/1507.02646
[3]Magnusson, M., Riis Andersen, M., Jonasson, J., & Vehtari, A. Bayesian Leave-One-Out Cross-Validation for Large Data. Proceedings of the 36th International Conference on Machine Learning, PMLR 97:4244–4253 (2019) https://proceedings.mlr.press/v97/magnusson19a.html arXiv preprint https://arxiv.org/abs/1904.10679
Examples
To calculate PSIS-LOO-CV for posterior approximations, we need to provide the log-densities of the target and proposal distributions. Here we use dummy log-densities. In practice, the log-densities would typically be computed by a posterior approximation method such as the Laplace approximation or automatic differentiation variational inference (ADVI):
In [1]: import numpy as np ...: import xarray as xr ...: from arviz_stats import loo_approximate_posterior ...: from arviz_base import load_arviz_data, extract ...: ...: data = load_arviz_data("centered_eight") ...: log_lik = extract(data, group="log_likelihood", var_names="obs", combined=False) ...: rng = np.random.default_rng(214) ...: ...: values_p = rng.normal(loc=0, scale=1, size=(log_lik.chain.size, log_lik.draw.size)) ...: log_p = xr.DataArray( ...: values_p, ...: dims=["chain", "draw"], ...: coords={"chain": log_lik.chain, "draw": log_lik.draw} ...: ) ...: ...: values_q = rng.normal(loc=-1, scale=1, size=(log_lik.chain.size, log_lik.draw.size)) ...: log_q = xr.DataArray( ...: values_q, ...: dims=["chain", "draw"], ...: coords={"chain": log_lik.chain, "draw": log_lik.draw} ...: ) ...:
Now we can calculate pointwise PSIS-LOO-CV for posterior approximations:
In [2]: loo_approx = loo_approximate_posterior( ...: data, ...: log_p=log_p, ...: log_q=log_q, ...: var_name="obs", ...: pointwise=True ...: ) ...: loo_approx ...: Out[2]: Computed from 2000 posterior samples and 8 observations log-likelihood matrix. Posterior approximation correction used. Estimate SE elpd_loo -30.76 1.36 p_loo 0.93 - ------ Pareto k diagnostic values: Count Pct. (-Inf, 0.70] (good) 8 100.0% (0.70, 1] (bad) 0 0.0% (1, Inf) (very bad) 0 0.0%
We can also calculate the PSIS-LOO-CV for posterior approximations with subsampling for large datasets:
In [3]: from arviz_stats import loo_subsample ...: loo_approx_subsample = loo_subsample( ...: data, ...: observations=4, ...: var_name="obs", ...: log_p=log_p, ...: log_q=log_q, ...: pointwise=True ...: ) ...: loo_approx_subsample ...: Out[3]: Computed from 2000 by 4 subsampled log-likelihood values from 8 total observations. Posterior approximation correction used. Estimate SE subsampling SE elpd_loo -30.8 1.5 0.4 p_loo 1.0 ------ Pareto k diagnostic values: Count Pct. (-Inf, 0.70] (good) 4 100.0% (0.70, 1] (bad) 0 0.0% (1, Inf) (very bad) 0 0.0%